Since the dot product of vectors is distributive, therefore, if $\mathbf{a} = a_i \mathbf{e}_i$ and $\mathbf{b} = b_i \mathbf{e}_i$, then

$$\mathbf{a} \cdot \mathbf{b} = (a_i \mathbf{e}_i) \cdot (b_i \mathbf{e}_i) = a_i b_i (\mathbf{e}_i \cdot \mathbf{e}_i).$$

In particular, if \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 are unit vectors perpendicular to one another, then $\mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij}$ so that

$$\mathbf{a} \cdot \mathbf{b} = a_i b_i \delta_{ii} = a_i b_i = a_1 b_1 + a_2 b_2 + a_3 b_3$$

which is the familiar expression for the evaluation of the dot product in terms of the vector components.

(c) Factoring: If

$$T_{ii}n_i - \lambda n_i = 0$$
,

then, using the Kronecker delta, we can write $n_i = \delta_{ii} n_i$, so that we have

$$T_{ii}n_i - \lambda \delta_{ii}n_i = 0.$$

Thus,

$$(T_{ii} - \lambda \delta_{ii})n_i = 0.$$

(d) *Contraction*: The operation of identifying two indices is known as a *contraction*. Contraction indicates a sum on the index. For example, T_{ii} is the contraction of T_{ij} with

$$T_{ii} = T_{11} + T_{22} + T_{33}$$
.

If

$$T_{ij} = \lambda \Delta \delta_{ij} + 2\mu E_{ij},$$

then

$$T_{ii} = \lambda \Delta \delta_{ii} + 2\mu E_{ii} = 3\lambda \Delta + 2\mu E_{ii}$$
.

PROBLEMS FOR PART A

2.1 Given

$$[S_{ij}] = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 3 & 0 & 3 \end{bmatrix}$$
 and $[a_i] = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$,

evaluate (a) S_{ii} , (b) $S_{ij}S_{ij}$, (c) $S_{ji}S_{ji}$, (d) $S_{jk}S_{kj}$, (e) a_ma_m , (f) $S_{mn}a_ma_n$, and (g) $S_{nm}a_ma_n$.

- **2.2** Determine which of these equations has an identical meaning with $a_i = Q_{ij}a'_j$. (a) $a_p = Q_{pm}a'_m$, (b) $a_p = Q_{qp}a'_q$, (c) $a_m = a'_nQ_{mn}$.
- **2.3** Given the following matrices

$$[a_i] = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad [B_{ij}] = \begin{bmatrix} 2 & 3 & 0 \\ 0 & 5 & 1 \\ 0 & 2 & 1 \end{bmatrix},$$

demonstrate the equivalence of the subscripted equations and the corresponding matrix equations in the following two problems:

(a)
$$b_i = B_{ij}a_j$$
 and $[b] = [B][a]$ and (b) $s = B_{ij}a_ia_j$ and $s = [a]^T[B][a]$.

- **2.4** Write in indicial notation the matrix equation (a) [A] = [B][C], (b) $[D] = [B]^{T}[C]$ and (c) $[E] = [B]^{T}[C][F]$.
- **2.5** Write in indicial notation the equation (a) $s = A_1^2 + A_2^2 + A_3^2$ and (b) $\frac{\partial^2 \phi}{\partial x_1^2} + \frac{\partial^2 \phi}{\partial x_2^2} + \frac{\partial^2 \phi}{\partial x_3^2} = 0$.
- **2.6** Given that $S_{ij} = a_i a_j$ and $S'_{ij} = a'_i a'_j$, where $a'_i = Q_{mi} a_m$ and $a'_j = Q_{nj} a_n$, and $Q_{ik} Q_{jk} = \delta_{ij}$, show that $S'_{ii} = S_{ii}$.
- **2.7** Write $a_i = \frac{\partial v_i}{\partial t} + v_j \frac{\partial v_i}{\partial x_j}$ in long form.
- **2.8** Given that $T_{ij} = 2\mu E_{ij} + \lambda E_{kk} \delta_{ij}$, show that (a) $T_{ij} E_{ij} = 2\mu E_{ij} E_{ij} + \lambda (E_{kk})^2$ and (b) $T_{ij} T_{ij} = 4\mu^2 E_{ij} E_{ij} + (E_{kk})^2 (4\mu\lambda + 3\lambda^2)$.
- **2.9** Given that $a_i = T_{ij}b_j$, and $a_i' = T_{ij}'b_j'$, where $a_i = Q_{im}a_m'$ and $T_{ij} = Q_{im}Q_{jn}T_{mn}'$, (a) show that $Q_{im}T_{mn}'b_n' = Q_{im}Q_{jn}T_{mn}'b_j$ and (b) if $Q_{ik}Q_{im} = \delta_{km}$, then $T_{kn}'(b_n' Q_{jn}b_j) = 0$.
- **2.10** Given

$$[a_i] = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad [b_i] = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix},$$

evaluate $[d_i]$, if $d_k = \varepsilon_{ijk} a_i b_j$, and show that this result is the same as $d_k = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{e}_k$.

- **2.11** (a) If $\varepsilon_{ijk}T_{ij}=0$, show that $T_{ij}=T_{ji}$, and (b) show that $\delta_{ij}\varepsilon_{ijk}=0$.
- **2.12** Verify the following equation: $\varepsilon_{ijm}\varepsilon_{klm} = \delta_{ik}\delta_{jl} \delta_{il}\delta_{jk}$. *Hint:* There are six cases to be considered: (1) i = j, (2) i = k, (3) i = l, (4) j = k, (5) j = l, and (6) k = l.
- **2.13** Use the identity $\varepsilon_{ijm}\varepsilon_{klm} = \delta_{ik}\delta_{jl} \delta_{il}\delta_{jk}$ as a shortcut to obtain the following results: (a) $\varepsilon_{ilm}\varepsilon_{jlm} = 2\delta_{ij}$ and (b) $\varepsilon_{ijk}\varepsilon_{ijk} = 6$.
- **2.14** Use the identity $\varepsilon_{ijm}\varepsilon_{klm} = \delta_{ik}\delta_{jl} \delta_{il}\delta_{jk}$ to show that $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$.
- **2.15** Show that (a) if $T_{ij} = -T_{ji}$, then $T_{ij}a_ia_j = 0$, (b) if $T_{ij} = -T_{ji}$, and $S_{ij} = S_{ji}$, then $T_{ij}S_{ij} = 0$.
- **2.16** Let $T_{ij} = \frac{1}{2}(S_{ij} + S_{ji})$ and $R_{ij} = \frac{1}{2}(S_{ij} S_{ji})$, show that $T_{ij} = T_{ji}$, $R_{ij} = -R_{ji}$, and $S_{ij} = T_{ij} + R_{ij}$.
- **2.17** Let $f(x_1, x_2, x_3)$ be a function of x_1 , x_2 , and x_3 and let $v_i(x_1, x_2, x_3)$ be three functions of x_1 , x_2 , and x_3 . Express the total differential df and dv_i in indicial notation.
- **2.18** Let $|A_{ij}|$ denote the determinant of the matrix $[A_{ij}]$. Show that $|A_{ij}| = \varepsilon_{ijk}A_{i1}A_{j2}A_{k3}$.

PART B: TENSORS

2.6 TENSOR: A LINEAR TRANSFORMATION

Let T be a transformation that transforms any vector into another vector. If T transforms \mathbf{a} into \mathbf{c} and \mathbf{b} into \mathbf{d} , we write $T\mathbf{a} = \mathbf{c}$ and $T\mathbf{b} = \mathbf{d}$.

If **T** has the following linear properties:

$$\mathbf{T}(\mathbf{a} + \mathbf{b}) = \mathbf{T}\mathbf{a} + \mathbf{T}\mathbf{b},\tag{2.6.1}$$

$$\mathbf{T}(\alpha \mathbf{a}) = \alpha \mathbf{T} \mathbf{a},\tag{2.6.2}$$