

DATA: 20/03/2019

Professor: Emílio G. F. Mercuri

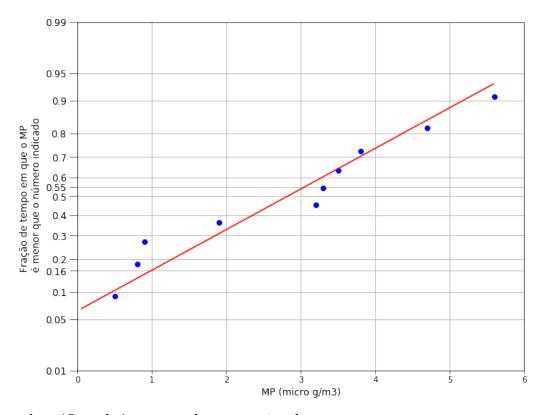
(1) Foram realizadas medições diárias de material particulado com diâmetro menor que 10 micrômetros (MP $_{10}$) em um bairro de Curitiba. Os resultados estão ilustrados na Tabela 1:

Tabela 1. Medições de Material Particulado

Dia	$MP_{10} (\mu g/m^3)$	
1	3,8	
2	3,3	
3	0,9	
4	4,7	
5	3,2	
6	0,8	
7	3,5	
8	5,6	
9	1,9	
10	0,5	

Realize estimativas considerando que os dados estão distribuídos seguindo a distribuição normal ou gaussiana. Para responder as perguntas abaixo pode ser utilizado o papel de probabilidades normal. Não é necessário usar o método dos mínimos quadrados para eventuais ajustes de retas, as retas podem ser aproximadas.

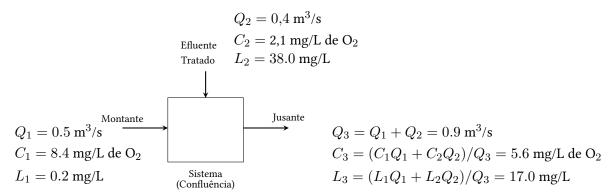
- a) Qual é a fração de tempo em que se pode esperar um MP₁₀ acima de 3,0 μ g/m³?
- b) Qual é a fração de tempo em que o \overline{MP}_{10} ficará abaixo de 1,0 μ g/m³?


Solução da Questão 1

Seguindo o procedimento discutido em sala de aula:

1) tabular os dados em ordem crescente, 2) enumerar a lista e 3) estimar a probabilidade empírica, obtém-se a tabela:

	MP10	m	m/(n+1)
0	0.5	1.0	0.090909
1	0.8	2.0	0.181818
2	0.9	3.0	0.272727
3	1.9	4.0	0.363636
4	3.2	5.0	0.454545
5	3.3	6.0	0.545455
6	3.5	7.0	0.636364
7	3.8	8.0	0.727273
8	4.7	9.0	0.818182
9	5.6	10.0	0.909091


Em seguida: 4) plotar o gráfico dos dados utilizando o papel de probabilidade normal e traçar uma linha aproximada que melhor se ajusta aos pontos (linha vermelha):

Através da leitura do gráfico, obtém-se os valores aproximados:

- a) A fração de tempo em que se pode esperar um MP $_{10}$ acima de 3,0 $\mu \rm g/m^3$ é 1 0.55 = 0.45, ou 45% do tempo.
- b) A fração de tempo em que o $\mathrm{MP_{10}}$ ficará abaixo de 1,0 $\mu\mathrm{g/m^3}$ é 0.16, ou 16% do tempo.

(2) Uma estação de tratamento descarrega efluentes em um rio. As vazões Q, as concentrações de oxigênio dissolvido C e as concentrações da demanda bioquímica de oxigênio L estão representados na figura abaixo. São conhecidas as vazões e concentrações do efluente tratado e as vazões e concentrações do rio a montante do lançamento de efluentes. Considere hipótese do estado estacionário na confluência dos fluxos.

Determine as variáveis a jusante do lançamento:

- a) Vazão Q_3
- b) Concentração de oxigênio dissolvido C_3
- c) DBO L_3

Solução da Questão 2

Respostas na figura acima.